Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited
نویسندگان
چکیده
The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs) in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL), a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.
منابع مشابه
Trade-offs and Noise Tolerance in Signal Detection by Genetic Circuits
Genetic circuits can implement elaborated tasks of amplitude or frequency signal detection. What type of constraints could circuits experience in the performance of these tasks, and how are they affected by molecular noise? Here, we consider a simple detection process-a signal acting on a two-component module-to analyze these issues. We show that the presence of a feedback interaction in the de...
متن کاملThe incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli.
Complex gene regulation networks are made of simple recurring gene circuits called network motifs. One of the most common network motifs is the incoherent type-1 feed-forward loop (I1-FFL), in which a transcription activator activates a gene directly, and also activates a repressor of the gene. Mathematical modeling suggested that the I1-FFL can show two dynamical features: a transient pulse of...
متن کاملA Mixed Incoherent Feed-Forward Loop Allows Conditional Regulation of Response Dynamics
Expression of the SodA superoxide dismutase (MnSOD) in Escherichia coli is regulated by superoxide concentration through the SoxRS system and also by Fur (Ferric uptake regulator) through a mixed incoherent feed forward loop (FFL) containing the RyhB small regulatory RNA. In this work I theoretically analyze the function of this feed forward loop as part of the network controlling expression of...
متن کاملSignal Manifestation Trade-offs in Incoherent Feed-Forward Loops
Signal processing in biological systems is delicately executed by specialised networks, which are modular assemblies of network motifs. The motifs are independently functional circuits found in enormous numbers in any living cell. A very common network motif is the feed-forward loop (FFL), which regulates a downstream node by an upstream one in a direct and an indirect way within the network. I...
متن کاملNoise characteristics of feed forward loops.
A prominent feature of gene transcription regulatory networks is the presence in large numbers of motifs, i.e., patterns of interconnection, in the networks. One such motif is the feed forward loop (FFL) consisting of three genes X, Y and Z. The protein product x of X controls the synthesis of protein product y of Y. Proteins x and y jointly regulate the synthesis of z proteins from the gene Z....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016